

Disjoint-set Operations

Kuan-Yu Chen (陳冠宇)

2019/05/07 @ TR-310-1, NTUST

Disjoint Sets.

- Some applications involve grouping n distinct elements into a collection of disjoint sets
 - Example:
 - $\{1, 2, 3\}$
 - $\{4, 5\}$
 - $\{6\}$
 - $\{1, 3, 5\}$
 - $\{1, 2, 3\}, \{4, 5\}, \{6\}$ are disjoint sets
 - $\{1, 2, 3\}, \{4, 5\}, \{6\}, \{1, 3, 5\}$ are not disjoint sets

Disjoint Sets..

- A *disjoint-set data structure* maintains a collection $S = \{S_1, S_2, \dots, S_k\}$ of disjoint dynamic sets
 - We identify each set by a *representative*
 - Representative should be time-invariant
 - How to choose the representative
- Letting x denote an object, an element in a set, we wish to support the following operations
 - $\text{MAKE-SET}(x)$ creates a new set whose only member (and thus representative) is x
 - $\text{UNION}(x, y)$ unites the dynamic sets that contain x and y into a new set
 - $\text{FIND}(x)$ returns a pointer to the representative of the (unique) set containing x

Example.

- One of the many applications of disjoint-set data structures arises in determining the connected components of an undirected graph
 - Given a graph $G = (V, E)$, where $V = \{a, b, c, d, e, f, g, h, i\}$ and $E = \{(b, d), (e, g), (a, c), (h, i), (a, b), (e, f), (b, c)\}$
 - The procedure CONNECTED-COMPONENTS initially places each vertex v in its own set
 - Then, for each edge (u, v) , it unites the sets containing u and v

```
CONNECTED-COMPONENTS( $G$ )
1  for each vertex  $v \in G.V$ 
2      MAKE-SET( $v$ )
3  for each edge  $(u, v) \in G.E$ 
4      if FIND-SET( $u$ )  $\neq$  FIND-SET( $v$ )
5          UNION( $u, v$ )
```

Example..

- Given a graph $G = (V, E)$, where $V = \{a, b, c, d, e, f, g, h, i\}$ and $E = \{(b, d), (e, g), (a, c), (h, i), (a, b), (e, f), (b, c)\}$

CONNECTED-COMPONENTS(G)

```

1  for each vertex  $v \in G.V$ 
2      MAKE-SET( $v$ )
3  for each edge  $(u, v) \in G.E$ 
4      if FIND-SET( $u$ )  $\neq$  FIND-SET( $v$ )
5          UNION( $u, v$ )

```

Edge processed	Collection of disjoint sets									
initial sets	{a}	{b}	{c}	{d}	{e}	{f}	{g}	{h}	{i}	{j}
(b,d)	{a}	{b,d}	{c}		{e}	{f}	{g}	{h}	{i}	{j}
(e,g)	{a}	{b,d}	{c}		{e,g}	{f}		{h}	{i}	{j}
(a,c)	{a,c}	{b,d}			{e,g}	{f}		{h}	{i}	{j}
(h,i)	{a,c}	{b,d}			{e,g}	{f}		{h,i}		{j}
(a,b)	{a,b,c,d}				{e,g}	{f}		{h,i}		{j}
(e,f)	{a,b,c,d}				{e,f,g}			{h,i}		{j}
(b,c)	{a,b,c,d}				{e,f,g}			{h,i}		{j}

Example...

- Finally, the procedure SAME-COMPONENT can determine whether two vertices are in the same connected component

A component, sometimes called a connected component, of an undirected graph is a subgraph in which any two vertices are connected to each other by paths

SAME-COMPONENT(u, v)

```

1  if FIND-SET( $u$ ) == FIND-SET( $v$ )
2      return TRUE
3  else return FALSE

```


Edge processed	Collection of disjoint sets									
initial sets	{a}	{b}	{c}	{d}	{e}	{f}	{g}	{h}	{i}	{j}
(b,d)	{a}	{b,d}	{c}		{e}	{f}	{g}	{h}	{i}	{j}
(e,g)	{a}	{b,d}	{c}		{e,g}	{f}		{h}	{i}	{j}
(a,c)	{a,c}	{b,d}			{e,g}	{f}		{h}	{i}	{j}
(h,i)	{a,c}	{b,d}			{e,g}	{f}		{h,i}		{j}
(a,b)	{a,b,c,d}				{e,g}	{f}		{h,i}		{j}
(e,f)	{a,b,c,d}				{e,f,g}			{h,i}		{j}
(b,c)	{a,b,c,d}				{e,f,g}			{h,i}		{j}

Questions?

kychen@mail.ntust.edu.tw